Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA
نویسندگان
چکیده
Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions.
منابع مشابه
The Human Mitochondrial Transcriptome
The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demons...
متن کاملSmall RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs
Micro RNAs (miRNA) are non-coding RNAs expressed in the cytoplasm as their mature, 21-22-nucleotide short forms. More recently, mature miRNAs have also been detected in the nucleus, raising the possibility that their spatial distribution may be more complex than anticipated. Here we undertook comprehensive systematic analyses of miRNA distribution in several subcellular compartments of human ca...
متن کاملO-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کاملdeepBase: a database for deeply annotating and mining deep sequencing data
Advances in high-throughput next-generation sequencing technology have reshaped the transcriptomic research landscape. However, exploration of these massive data remains a daunting challenge. In this study, we describe a novel database, deepBase, which we have developed to facilitate the comprehensive annotation and discovery of small RNAs from transcriptomic data. The current release of deepBa...
متن کاملDeep Sequencing of Small RNA Repertoires in Mice Reveals Metabolic Disorders-Associated Hepatic miRNAs
Obesity and associated metabolic disorders contribute importantly to the metabolic syndrome. On the other hand, microRNAs (miRNAs) are a class of small non-coding RNAs that repress target gene expression by inducing mRNA degradation and/or translation repression. Dysregulation of specific miRNAs in obesity may influence energy metabolism and cause insulin resistance, which leads to dyslipidemia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012